with an enhanced reactivity toward bis-silylation. The present bis-silylation did not require an electron-withdrawing group on the silicon atom (entry 1). Furthermore, a tertiary alkyl-silicon bond was readily formed by the bis-silylation of a geminally disubstituted olefin (entry 7). However, vicinally disubstituted olefins were found not to undergo bis-silylation.

It is noteworthy that bis-silylation of alkenes having an asymmetric center in the tether proceeded with high diastereoselection.⁸ Alkenes having allylic substituents, i.e., α to the C—C bond, gave *trans*-2 (entries 2 and 3), whereas substituents β to the C—C bond favored *cis*-2 (entries 4–7). The stereoselectivity of the reaction is formulated as arising through a preference for a six-membered cyclic transition state 2t, in which the substituents R¹ or R² are equatorial.

The stereoselective intramolecular bis-silylation of olefinic disilanyl ethers, readily prepared from allylic and homoallylic alcohols, is synthetically useful. Thus, oxidation of the two carbon-silicon bonds of the bis-silylation products introduces two hydroxyl groups leading to the stereo- and regio-defined synthesis of triols as demonstrated in the 1h to 4 and 1i to 6 conversions. The use of isopropoxydisilyl ether derivatives of olefinic alcohols facilitates the ultimate oxidation of the silicon-carbon bond. The olefinic disilanyl ether 1h underwent stereoselective bis-silylation to furnish 2h, which was oxidized with retention of stereochemistry at carbon⁹ to threo-3-methylbutane-1,2,4-triol (3), a versatile intermediate for the syntheses of δ -multistriatin¹⁰ and ionophore antibiotic X-14547A.¹¹ Similarly, the olefinic disilarly ether 1i was converted to 1,2,3-triol triacetate 6 with moderate stereoselection (88:12) by intramolecular bis-silulation and subsequent oxidation. The stereochemistry of 6 suggests formation of the trans-disubstituted four-membered bis-silylation product 5 analogous to 2a, although the four-membered silvl ether 5 was too unstable to be isolated and characterized.¹² Thus, intramolecular bis-silylation followed by oxidation offers a new entry to stereoselective dihydroxylation of olefins.

Acknowledgment. This work was supported in part by the Ministry of Education, Science and Culture, Japan (Grant-in-Aid for General Scientific Research 01430017). P.G.A. acknowledges fellowship support from the Royal Swedish Academy of Sciences and Japan Society for the Promotion of Science.

Supplementary Material Available: Experimental details for the synthesis and identification of 2a-h, 4, and 6 (6 pages). Ordering information is given on any current masthead page.

(9) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694.

Models for Non-Heme Iron Oxygenases: A High-Valent Iron-Oxo Intermediate

Randolph A. Leising, Bridget A. Brennan, and Lawrence Que, Jr.*

Department of Chemistry, University of Minnesota Minneapolis, Minnesota 55455

Brian G. Fox and Eckard Münck*

Department of Chemistry, Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213

Received November 27, 1990

The ferryl (Fe=O) species has been demonstrated to be an intermediate in heme peroxidase chemistry¹ and implicated in cytochrome P-450 catalyzed oxygenations.² By analogy to these heme enzymes, ferryl species are increasingly being proposed in the mechanisms of dioxygen activation by non-heme iron enzymes³⁻⁶ and invoked in the chemistry of several non-heme alkane functionalization catalysts.7 Although transient non-heme iron-oxo species have been reported, they have not been fully characterized,^{8,9} and the actual viability of an iron(oxo) intermediate in the absence of a porphyrin ligand has yet to be firmly established. During the course of our alkane functionalization studies,¹⁰ we have identified a reactive intermediate derived from the reaction of a $(\mu$ -oxo)diferric complex with hydrogen peroxide and report here the spectroscopic characterization of this novel high-valent non-heme iron species.

The reaction of $Fe(ClO_4)_3$ with TPA¹¹ in the absence of other coordinating anions affords $Fe_2TPA_2O(ClO_4)_4$ (1),¹² which has

(2) McMurry, T. J.; Groves, J. T. Cytochrome P-450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P. R., Ed.; Plenum: New York, 1986; p 3 and references therein.

(3) Methane monooxygenase: (a) Fox, B. G.; Borneman, J. G.; Wackett, L. P.; Lipscomb, J. D. *Biochemistry* **1990**, *29*, 6419-6427. (b) Fox, B. G.; Froland, W. A.; Dege, J. E.; Lipscomb, J. D. J. Biol. Chem. **1989**, *264*, 10023-10033. (c) Green, J.; Dalton, H. J. Biol. Chem. **1989**, *264*, 17698-17703.

(4) Ribonucleotide reductase: (a) Sahlin, M.; Sjöberg, B.-M.; Backes, G.; Loehr, T.; Sanders-Loehr, J. *Biochem. Biophys. Res. Commun.* 1990, 167, 813-818. (b) Fontecave, M.; Gerez, C.; Atta, M.; Jeunet, A. *Biochem. Biophys. Res. Commun.* 1990, 168, 659-664.

(5) Phenylalanine hydroxylase: Dix, T. A.; Benkovic, S. J. Acc. Chem. Res. 1988, 21, 101-107.

(6) Isopenicillin N synthase: Baldwin, J. E.; Abraham, E. Nat. Prod. Rep. 1988, 5, 129-145.

(7) (a) Groves, J. T.; Van Der Puy, M. J. Am. Chem. Soc. 1976, 98, 5290-5297. (b) Sugimoto, H.; Sawyer, D. T. J. Am. Chem. Soc. 1976, 98, 4283-4285. (c) Vincent, J. B.; Huffman, J. C.; Christou, G.; Li, Q.; Nanny, M. A.; Hendrickson, D. N.; Fong, R. H.; Fish, R. H. J. Am. Chem. Soc. 1988, 110, 6898-6900. (d) Barton, D. H. R.; Halley, F.; Ozbalik, N.; Young, E.; Balavoine, G.; Gref, A.; Boivin, J. New J. Chem. 1989, 13, 177-182. (e) Herron, N. New J. Chem. 1989, 13, 761-766.

(8) Proniewicz, L. M.; Bajdor, K.; Nakamoto, K. J. Phys. Chem. 1986, 90, 1760-1766.

(9) Stassinopoulos, A.; Caradonna, J. P. J. Am. Chem. Soc. 1990, 112, 7071-7073.

(10) Leising, R. A.; Norman, R. E.; Que, L., Jr. Inorg. Chem. 1990, 29, 2553-2555.

(11) Abbreviations used: TPA = tris(2-pyridylmethyl)amine; OAc = acetate; Por = porphyrin.

⁽⁸⁾ Details of the assignment of stereochemistry are described in the supplementary material.

⁽¹⁰⁾ Mori, K.; Iwasawa, H. Tetrahedron 1980, 36, 87.

⁽¹¹⁾ Nicolaou, K. C.; Papahatjis, D. P.; Claremon, D. A.; Magolda, R. L.; Dolle, R. E. J. Org. Chem. 1985, 50, 1440.

⁽¹²⁾ The mixture was oxidized directly to triol after removal of catalyst by filtration through a short column of Florisil.

^{(1) (}a) Schulz, C. E.; Devaney, P. W.; Winkler, H.; Debrunner, P. G.; Doan, N.; Chiang, R.; Rutter, R.; Hager, L. P. FEBS Lett. 1979, 103, 102-105. (b) Roberts, J. E.; Hoffman, B. M.; Rutter, R.; Hager, L. P. J. Biol. Chem. 1981, 256, 2118-2121. (c) LaMar, G. N.; deRopp, J. S.; Smith, K. M.; Langry, K. C. J. Biol. Chem. 1981, 256, 237-243. (d) Hashimoto, S.; Teraoka, J.; Inubushi, T.; Yonetani, T.; Kitagawa, T. J. Biol. Chem. 1986, 261, 1110-11118. (e) Penner-Hahn, J. E.; Eble, K. S.; McMurry, T. J.; Renner, M.; Balch, A. L.; Groves, J. T.; Dawson, J. H.; Hodgson, K. O. J. Am. Chem. Soc. 1986, 108, 7819-7825.

Figure 1. Electronic spectra at -40 °C in CH₃CN (0.1-cm path length) of (a) 1 (6.1 mM) and (b) 1 (6.1 mM) + 1.5 equiv of H_2O_2 .

spectral features similar to those of $[Fe_2TPA_2(\mu-O)\{\mu-O_2P-(OPh)_2\}](ClO_4)_3$.¹³ 1 exhibits ¹H NMR isotropic shifts for TPA indicative of strong antiferromagnetic coupling, two Mössbauer doublets at 140 K ($\Delta E_{Q_1} = 1.57 \text{ mm/s}$, $\Delta E_{Q_2} = 1.03 \text{ mm/s}$, and $\delta_1 = \delta_2 = 0.42 \text{ mm/s}$), and a Raman spectrum with ν_s (FeOFe) at 456 cm⁻¹. These features are diagnostic for a bent (μ -oxo)diiron(TPA) complex.14

Like other Fe(TPA) complexes,¹⁰ 1 catalyzes the room temperature hydroxylation of cyclohexane in the presence of t-BuOOH or H_2O_2 .¹⁵ Interestingly, a fleeting green color is observed with H_2O_2 as oxidant. At -40 °C 1 reacts with 1 equiv of 30% H_2O_2 in acetonitrile to form a metastable dark green species (2) that persists for over 2 h. The addition of 1 equiv of Ph₃P discharges the color within seconds and results in the stoichiometric formation of Ph₃PO, while the addition of cumene affords a ca. 50% yield of the tertiary alcohol.¹⁶

Species 2 exhibits a visible spectrum (Figure 1b) with λ_{max} at 614 nm (ϵ = 3500 M⁻¹ cm⁻¹). Excitation at 614 nm affords a resonance Raman spectrum with prominent bands at 416 and 666 cm⁻¹, which shift to 408 and 638 cm⁻¹, respectively, upon addition of $H_2^{18}O$,¹⁷ but are unaffected by the presence of D_2O . These observations rule out the possibility that 2 is simply a peroxide adduct of 1, i.e., [Fe₂TPA₂O(O₂)]^{2+,18} However, the solvent exchangeability and the large ¹⁸O shift observed prompt us to

(13) Norman, R. E.; Yan, S.; Que, L., Jr.; Backes, G.; Ling, J.; San-ders-Loehr, J.; Zhang, J. H.; O'Connor, C. J. J. Am. Chem. Soc. 1990, 112, 1554-1562.

(14) Norman, R. E.; Holz, R. C.; Menage, S.; Que, L., Jr.; Zhang, J. H.;
O'Connor, C. J. *Inorg. Chem.* 1990, 29, 4629-4637.
(15) The reaction of 1 + 150 equiv of t-BuOOH or H₂O₂ with 1100 equiv of cyclohexane for 15 min at 25 °C produced cyclohexanol, cyclohexanone, and (*tert*-butyldioxy)cyclohexane. Values of (moles of product)/(moles of stables) for the OOH are 4, 15 and 22 representiable those for HoOH are 4. catalyst) for t-BuOOH are 4, 15, and 22, respectively; those for H₂O₂ are 1, 2, and 0, respectively.

(16) In the absence of 1, Ph₃P reacts with H₂O₂ under the same conditions to afford 20% oxide, while cumene is unreactive

(17) The Fe-180 sample was prepared by adding 30% aqueous $H_2^{16}O_2$ diluted in $H_2^{18}O$ (20:1 $H_2^{18}O$:H_2^{16}O) to a 5 mM sample of 2 in CH₃CN or CD₃CN at -40 °C. The sample was then quickly frozen, and Raman data was acquired at 80 K. No decomposition of the frozen sample was noted after 8 h of irradiation.

Figure 2. X-band EPR spectrum of 2, formed from the addition of 1.5 equiv of H₂O₂ to 1 (8.1 mM) at -40 °C in CH₃CN. Experimental conditions: T = 2.1 K, 9.2-GHz microwave frequency, 0.1-mW microwave power, 10-G modulation amplitude, 50 receiver gain. Signals ascribed to 2 quantitate to 0.47 spin/Fe. Features at g = 5.6 and 7.8 are impurities in the starting material and account for <6% of the Fe in the sample.

Figure 3. Mössbauer spectra of ⁵⁷Fe-enriched 1 (2.0 mM) after reaction with 5 equiv of H₂O₂ in CD₃CN at -40 °C. (A) Zero-field spectrum recorded at 140 K. Solid line indicates contribution of 2. (B) A 4.2 K spectrum recorded in a 0.15-T field applied parallel to the observed γ radiation. (C) A 4.2 K difference spectrum obtained by subtraction of a 60-mT perpendicular-field spectrum from a 60-mT parallel-field spectrum. The solid lines in parts B and C of Figure 3 are theoretical spectra computed from:

$$H = \beta \vec{S}' \cdot \vec{g} \cdot \vec{H} + \vec{S}' \cdot \vec{A} \cdot \vec{I} + \frac{eQV_{12}}{12} \left[3I_z^2 = \frac{15}{4} + \eta (I_x^2 - I_y^2) \right]$$

with $A_x = -16$ (3) MHz, $A_y = -17$ (3) MHz, $A_z = -7$ (4) MHz, $\Delta E_Q = 0.53$ (4) mm/s, $\delta = 0.11$ (2) mm/s, $\eta = 1$, where $S' = \frac{1}{2}$ is the fictitious spin of the ground doublet.

assign the 666-cm⁻¹ band to an Fe–O stretch ($\Delta \nu_{obsd} = -28 \text{ cm}^{-1}$; $\Delta \nu_{calcd} = -29 \text{ cm}^{-1}$). For comparison, the $\nu(M-O)$ values for oxometalloporphyrin complexes range from 622 to 1025 cm⁻¹ and are sensitive to the electronic configuration of the metal center, the basicity of the trans ligand, the nature of the porphyrin and

⁽¹²⁾ $[Fe_2TPA_2(O)](ClO_4)_4$ is synthesized by combination of 0.591 g of TPA-3HClO_4 (1.0 mmol) and 4.5 equiv of triethylamine with 0.531 g of Fe¹¹¹(ClO_4)_3·10H_2O (1.0 mmol) in 20 mL of methanol. A dark green/brown solid precipitates from the solution overnight in 79% yield. Anal. Calcd for $[Fe_2TPA_2(O)](ClO_4)_4$ (1) $(C_{36}H_{36}Cl_4Fe_2N_8O_{17})$: C, 39.09; H, 3.28; N, 10.13. Found: C, 38.89; H, 3.38; N, 10.19. UV/vis (CH₃CN, -40 °C): λ (ϵ , mM⁻¹ cm⁻¹) 324 (11.0), 430 (sh), 487 (0.5), 612 nm (0.2). ¹H NMR (CD₃CN, -30 °C): λ (ϵ , mM⁻¹ CO) + λ (ϵ) (10.19 Line (ϵ) °C): § 34 (br), 26 ppm (br), (19,18,14,13-m-pyr), (8,7,6-p-pyr). CAUTION! Metal perchlorate complexes with organic ligands are potentially explosive. Care should be exercised in handling these compounds, and they should only be prepared in small quantities.

⁽¹⁸⁾ The v_{0-0} for peroxide coordinated in any mode is expected to be observed in the 800-900-cm⁻¹ region and would not be affected by H₂¹⁸O; for example, see: (a) Ménage, S.; Brennan, B. A.; Juarez-Garcia, C.; Münck, E.; Que, L., Jr. J. Am. Chem. Soc. 1990, 112, 6423-6425. (b) Ahmad, S.; Colling, J. D. Schierke, A. K.; Anderson, E. H.; Loche, T. M. San McCallum, J. D.; Shiemke, A. K.; Appelman, E. H.; Loch, T. M.; San-ders-Loehr, J. Inorg. Chem. 1988, 27, 2230–2233. (c) Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley-In-terscience: New York, 1986; pp 426-433.

its oxidation state, and the presence of hydrogen-bonding interactions.¹⁹ The 416-cm⁻¹ feature is tentatively assigned to a metal-ligand vibration coupled to the Fe-O stretch.²⁰

Species 2 exhibits an EPR spectrum (Figure 2) with principal g values at $g_x = 3.95$, $g_y = 4.40$, and $g_z \sim 2.00$, assigned to the ground Kramers doublet (S' = 1/2) of a system with half-integral spin. Its intensity accounts for as much as 0.47 spin/Fe and correlates well with the intensity of the 614-nm band. The EPR spectrum is reminiscent of an $S = \frac{3}{2}$ multiplet with zero field splitting parameters D > 0 and E/D = 0.04. The Mössbauer spectra shown in Figure 3 were obtained after treating 1 with 5 equiv of H_2O_2 . Approximately 65% of the iron is diamagnetic and consists of two unresolved doublets ($\Delta E_{Q_1} = 1.63 \text{ mm/s}$, $\Delta E_{Q_2} = 1.15 \text{ mm/s}$, and $\delta_1 = \delta_2 = 0.44 \text{ mm/s}$ at 140 K). The remainder (ca. 30%) belongs to Kramers species 2. At 140 K the spectrum of 2 consists of one quadrupole doublet (Figure 3a) with ΔE_{Q} = 0.53 mm/s and $\delta = 0.07$ mm/s. Relative to 1, the isomer shift of 2 has changed from 0.42 mm/s to 0.07 mm/s, showing that 2 is oxidized relative to 1, most probably to the Fe(IV) state. In fact, the observed value of δ is similar to those of Fe(IV) complexes in heme²¹ and non-heme²² environments. At 4.2 K, 2 exhibits paramagnetic hyperfine structure (solid line in Figure 3b) as expected for a Kramers species and has a magnetic field dependence (60 mT \perp vs 60 mT \parallel) predictable from the EPR spectrum (solid line in Figure 3c).²³ The EPR spectrum of the Mössbauer sample accounts for 0.3 spin/Fe. Since 30% of the ⁵⁷Fe Mössbauer absorption is associated with 2, the EPR and Mössbauer data, taken together, strongly suggest that 2 is a mononuclear rather than a dinuclear complex.24

The spectroscopic data lead us to postulate the following reaction scheme:

$$[LFe-O-FeL]^{4+} + H_2O_2 \rightarrow [LFeO]^{3+} + [LFeOH]^{2+} + OH^{-1}$$

In this scheme, treatment of 1 with H_2O_2 causes the 2e oxidation of one of the ferric ions. Subsequent cleavage of the dinuclear complex yields 2 and ferric complex 3; the latter then dimerizes to form the spin-coupled diferric complex of parts a and b of Figure 3, which does not react with H_2O_2 at -40 °C. Thus, a stoichiometric formation of 2 would correspond to a maximum of 0.5 spin/Fe. It is clear from the spectroscopic data that 2 is a novel species; it is a Kramers system containing the non-Kramers ion Fe(IV) and exhibits remarkably small magnetic hyperfine interactions. These unusual observations can be reconciled with a model that considers ferromagnetic coupling $(H = JS_1 \cdot S_2, J < 0)$ of an S = 1 ferryl complex²⁵ $(D > 15 \text{ cm}^{-1}, E/D = 0.04)$ to an S = 1/2 radical, with coupling strength $J/D \sim -1.5.26$ We therefore formulate 2 as $[(L^{+})Fe^{IV}=O]^{3+}$, a species with electronic features similar to those of heme peroxidase compounds I^{1a,27} and related to the putative [(Por)Fe(O)]⁺ species in cytochrome P-450.² Thus high-valent iron-oxo species may also play a crucial role in the alkane functionalization reactions catalyzed by non-heme iron centers.

Acknowledgment. This work was supported by grants from the National Institutes of Health to L.Q. (GM-33162) and E.M. (GM-22701). We acknowledge an NIH National Research Service Award to R.A.L. (GM-13343) and an NIH Predoctoral Traineeship to B.A.B. (GM-08277).

M.; Debrunner, P. Biochemistry 1984, 23, 6809-6816.

Distortion toward Bridging Accompanying Hyperconjugation in a Simple Tertiary Alkyl Carbocation

Paul von Rague Schleyer* and José W. de M. Carneiro

Institut für Organische Chemie Universität Erlangen-Nurnberg, Henkestrasse 42 D-8520 Erlangen, Federal Republic of Germany

Wolfram Koch

Heidelberg Scientific Center, IBM Deutschland GmbH Tiergartenstrasse 15, D-6900 Heidelberg Federal Republic of Germany

David A. Forsyth*

Department of Chemistry, Northeastern University Boston, Massachusetts 02115 Received July 30, 1990

The 2-methyl-2-butyl (tert-pentyl) cation is the smallest tertiary carbocation that affords the possibility of stabilization through C-C hyperconjugation. The cation could adopt structure 1, in which the C3-C4 bond is aligned parallel with the "vacant" p orbital at C2⁺, or the planar geometry, 2, in which C-C hyperconjugation cannot take place. Despite experimental measurement of a variety of properties,¹⁻⁶ detailed information concerning the structure of the tert-pentyl cation has been completely lacking. The tert-pentyl cation has long been assumed to be "classical", and the NMR chemical shifts have been taken as references for carbenium ion behavior.¹⁻⁴ This assumption requires significant refinement, as we will demonstrate in this paper through the use of ab initio structures and IGLO (individual gauge for localized molecular orbitals) chemical shift calculations. Specifically, geometrical distortion toward bridging accompanies C-C hyperconjugation and leads to a reduction of about 20 ppm in the

0002-7863/91/1513-3990\$02.50/0 © 1991 American Chemical Society

M. K.; Macor, K. A.; Kim, D.; Groves, J. T.; Spiro, T. G. J. Am. Chem. Soc. **1988**, 110, 4158–4165. (e) Su, Y. O.; Czernuszewicz, R.; Miller, L. A.; Spiro, T. G. J. Am. Chem. Soc. **1988**, 110, 4150–4157. (f) Nick, R. J.; Ray, G. B.; Fish, K. M.; Spiro, T. G.; Groves, J. T. J. Am. Chem. Soc. 1991, 113, 1838-1840.

^{(20) (}a) Attempts to fit the 416- and 666-cm^{-1} bands as ν_s and ν_{ss} , respectively, of an Fe–O–Fe or related unit were unsuccessful. (b) In the resonance Raman spectrum of hemerythrin, a band at 292 cm⁻¹ displaying a 6-cm⁻¹¹⁸O shift has been assigned to an Fe–N(imidazole) stretch coupled to an Fe-O bond; see: Czernuszewicz, R. S.; Sheats, J. E.; Spiro, T. G. Inorg. Chem. 1987, 26, 2063-2067 and references therein.

⁽²¹⁾ See Table I in the following: Schulz, C. E.; Rutter, R.; Sage, J. T.; Debrunner, P. G.; Hager, L. P. Biochemistry 1984, 23, 4743-4754.

⁽²²⁾ Collins, T. J.; Kostka, K. L.; Münck, E.; Uffelman, E. S. J. Am. Chem. Soc. 1990, 112, 5637-5639.
(23) Münck, E.; Huynh, B. H. ESR and NMR of Paramagnetic Species

in Biological and Related Systems; Bertini, I., Drago, R. S., Eds.; D. Reidel: Amsterdam, 1979; pp 275-288. (24) Other Mössbauer samples, produced with different H₂O₂ concentra-

tions, give essentially the same spectroscopic results; in all cases, the con-centration of 2 obtained from EPR agrees with that obtained from the Mössbauer studies. Thus, the spectroscopic properties of 2 do not depend on the H₂O₂ concentration. (25) Oosterhuis, W. T.; Lang, G. J. Chem. Phys. 1973, 58, 4757-4765.

⁽²⁶⁾ The g and A tensors of the Fe(IV) t_{2g}^4 configuration were taken from ref 25 for $\Delta/\zeta = 3.7$ and $V/\Delta = -0.1$ where Δ and V are the tetragonal and rhombic ligand field parameters and ζ is the spin-orbit coupling constant $(\sim 400 \text{ cm}^{-1})$. Although the EPR spectrum resembles that observed for S = 30 (multiplets the EPR ($\sim 100 \text{ cm}^{-1}$). $^{3}_{2}$ multiplets, the EPR ($g_{\perp} > 4$) and Mössbauer (small A values) data are in conflict with either a d³ S = $^{3}_{2}$ Fe(V) or a strongly coupled (|J| > |D|) S = $^{3}_{2}$ system. Details will be reported elsewhere. (27) Rutter, R.; Hager, L. P.; Dhonau, H.; Hendrich, M. P.; Valentine,

^{(1) (}a) Olah, G. A.; Baker, E. B.; Evans, J. C.; Tolgyesi, W. S.; McIntyre, J. S.; Bastein, I. J. Am. Chem. Soc. **1964**, 86, 1360. (b) Olah, G. A.; Lukas, J. J. Am. Chem. Soc. **1967**, 89, 4739. (c) Olah, G. A.; Donovan, D. J. J. Am. Chem. Soc. **1977**, 99, 5026. (d) Olah, G. A.; Donovan, D. J. J. Am. Chem. Soc. 1978, 100, 5163.

^{(2) (}a) Saunders, M.; Hagen, E. L. J. Am. Chem. Soc. 1968, 90, 2436. (b) Saunders, M.; Vogel, P.; Hagen, E. L.; Rosenfeld, J. Acc. Chem. Res. 1973, 6, 53 and references therein. (c) Saunders, M.; Budiansky, S. P. Tetrahedron 1979, 35, 929.

⁽³⁾ Servis, K. L.; Shue, F.-F. J. Am. Chem. Soc. 1980, 102, 7233.
(4) Schleyer, P. v. R.; Lenoir, D.; Mison, P.; Liang, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 1980, 102, 683 and references therein.

 ^{(5) (}a) Solomon, J. J.; Field, F. H. J. Am. Chem. Soc. 1973, 95, 4483. (b)
 Solomon, J. J.; Meot-Ner, M.; Field, F. H. J. Am. Chem. Soc. 1974, 96, 3727.
 (6) Mirda, D.; Rapp, D.; Kramer, G. M. J. Org. Chem. 1979, 44, 2619.